

NOTTINGHAMSHIRE MINERALS LOCAL PLAN CALL FOR SITES

SITE NAME: NORTH ROAD QUARRY - (NORTH of A617)

LOCATION: NEWARK

	Plan Reference/Evidence	Additional Information
Proposed boundary of the site	Red line on Plan 2579-5-2-1 DR0001	Approximately 74 ha north of the A617, east of of the village of Kelham, which predominantly comprises agricultural land with hedgerows along field boundaries.
The extent of excavations	See Plan 2579-5-2-1 DR0001	The proposed excavation area from circa 56 Ha. Scheme provides for stand offs to the River Trent and Old Trent Dyke, the public highway (including the A617 and A616 (Great North Road), as well as an area of potential archaeological interest.
Proposed access to the site	Indicative access design shown on Drawing No. 001. Tracking shown Drawing No.002.	A dedicated access is proposed off the A616 (Great North Road) along the eastern boundary of the site. The proposed access junction includes an 8.3m carriageway width, radii and taper designed based on tracking requirements of an articulated HGV.
Potential location of processing plant	Refer to Plan 2579-5-2-1 DR0002	The indicative plant site location is proposed to the east of Phase 1.
Phasing	See Plan 2579-5-2-1 DR0001	Two main working phases are proposed, with Phase 1 to be worked east to west and Phase 2 to be worked north to south.
An OS Map of the site	OS detail included on Plans	/

Estimated number of HGV	/	Mineral Output - Circa 65 loads per day.
Movements per day/month/year		
		Imported Inert Infill - Circa 50 loads per day

Reserve Data

	Plan Reference/Evidence	Additional Information
Quality and quantity of recoverable reserves	/	Estimated workable reserves of 4 million tonnes north of the A617 (of which circa 0.3mt under processing plant site). Good quality Trent Valley sand and gravel suitable for production of concreting aggregate
Estimated output per annum	/	Approximately 250,000 tonnes per annum.
Estimated lifespan of the mineral working (years)	/	Approximately 16 years (extraction).
When will the site be ready to be worked?	/	2022.

Role of Sites/Market

	Plan Reference/Evidence	Additional Information
Is the site a new Greenfield site	/	Greenfield site.
or an extension?		
If a Greenfield site, is it	/	The site is a proposed replacement for the exhausted production sites east of
replacing an existing mineral		Nottingham (Holme Pierrepont Quarry and Hoveringham Quarry, which operated
working within or outside the		at 250,000-300,000 tonnes per annum and 450,000-500,000 tonnes per annum

county		respectively) and a direct replacement for Brooksby Quarry in Leicestershire (which serves the market east of Nottingham via the A46 trunk road). Brooksby Quarry operates at circa 250ktpa and is expected to be fully exhausted in circa 2026. There is no identifiable replacement for Brooksby Quarry, creating an identified sand and gravel reserve and production capacity shortfall in north east Leicestershire from circa 2026.
What is your planned market area?	/	The site is well located to serve the Nottingham and South Nottinghamshire markets and would directly replace output from Brooksby Quarry (which supplies the Barnstone Cement Works at Langor). The site would complement the company's existing operation at Langford Quarry which predominantly serves markets north and south along the A1 corridor. Other quarries that the company operates in the Trent Valley (i.e. Besthorpe Quarry and Girton Quarry) predominantly serve markets in north Nottinghamshire and South Yorkshire owing to vehicle routing requirements.
Is the location of the site optimum in terms of serving the market?	/	Yes the site is located adjacent to the strategic road network with access onto the A616 (Great North Road), which links in with the A46 to the east. Access to the A616 (Ollerton Road) and to the A1 at the North Muskham interchange is also readily attainable.

Availability of Mineral

	Plan Reference/Evidence	Additional Information
Do you have the legal rights to	/	Yes. Tarmac has an option to take a lease of the necessary mineral working rights
work all of the mineral		from the owner of the site.
including access to a public		

highway or any other transport		
route?		

Landowner Consent

	Plan Reference/Evidence	Additional Information
Who is the legal owner of the site?	/	The site is in a single ownership
Is the legal owner of the site also a minerals operator?	/	No
Has the legal owner made a formal agreement with any mineral operator for minerals exploration and/or minerals extraction?	/	Yes Tarmac hold a formal option to take a lease of the surface and the minerals from the owner. The owner fully supports the site being promoted to the Plan.

Agricultural Land Classification

	Plan Reference/Evidence	Additional Information
Agricultural land classifications	Refer to the attached assessment of	The site is mainly categorised as Subgrade 3a and Subgrade 3b agricultural land,
found within the site	Soil Resources and Agricultural Use	with some Grade 2 land.
	and Quality.	
		However given the site is prone to seasonal flooding the quality of the soils on

	site is diminished and the majority of the site is therefore, not considered best
	and most versatile agricultural land.

Sensitive Receptors

	Plan Reference/Evidence	Additional Information
Is the site located within 250m of any sensitive receptors? (schools, residential dwellings, workplaces, healthcare facilities)	Refer to Plan 2579-5-2-1 DR0001	There are a number of residential premises within 250m of the site comprising properties on the eastern edge of Kelham to the west of Phase 2 on the opposite side of the River Trent. Smeaton's Lake caravan park is also located approximately 100m to the east of Phase 1.
		The proximity of these receptors have been taken into account in the site design (i.e. through the inclusion of 100 m standoffs between the proposed extraction areas and those properties closest to the site and location of the processing plant within the site in an area of low sensitivity).

Reclamation

	Plan Reference/Evidence	Additional Information
Proposed reclamation schemes	See plan 2579 -5-2-1 DR0003	Proposed restoration is to agricultural land restored close to original ground
 what opportunities for 		levels through the use of on site soils and overburden and the importation of infill
environmental benefits do you		material. The land adjoining the River Trent to be restored to grassland, to allow
see arising from the scheme?		for seasonal flooding events. The restored landform to largely replicate the
		existing landscape, although significant opportunity to create enhanced grassland

		habitats in corridor adjo	ining River Trent.
Does the reclamation of the site	/	Infill required?	Yes for areas to be restored to agriculture.
depend on importing fill? If so,			An estimated 1.204 million m3 of imported material to
please indicate type of waste,			be required to restore the land to the proposed levels.
main sources and timescales			Importation estimated at circa 200,000 tonnes per
			annum.
		Type of waste	Imported inert demolition and construction material.
		Main source of waste	Excavation arisings from construction projects, mostly
			derived from ground excavation works within cira 20
			mile radius of the site.
		Timescales	Progressive restoration over the course of operations,
			commencing circa 2 years after mineral extraction
			commencement, (10 years proposed for life of infill
			operations).

© Crown copyright and database rights 2017 Ordnance Survey 0100031673 / This is Crown Copyright and is reproduced with the permission of Land & Property Services under delegated authority the Controller of Her Majesty's Stationery Office, © Crown Copyright and database right 2017 Licence Number 100,220-339663 / © Crown Copyright. Department of Infrastructure, Isle of Man

_	
Legen	d
	Boundary: Site
	Boundary: Proposed Extraction Area
22	Existing Vegetation
DAV	ID JARVIS ASSOCIATES
	A CRH COMPANY
Site Name:	
Kelham - N	North

Indicative Plant Site Layout

Drawn By: DJA Date:

Scale @ A3: 1:2,500

Drawing Number

08/01/2018

2579-5-2-1-DR0002 This drawing is copyrighted - Call: 01634 248260 / Email: data.mapping@tarmac.com

AGRICULTURAL LAND QUALITY AND SOIL RESOURCES OF LAND NEAR KELHAM, NOTTINGHAMSHIRE

F W Heaven BSc, MISoilSci

Report 414/1 Land Research Associates Lockington Hall, Lockington, Derby DE74 2RH

6 April, 2000

Introduction

This report considers the agricultural land quality and soil resources of land near Kelham in Nottinghamshire (Map 1). The work has included

- A detailed soil survey of most of the land
- A desk study of the remainder

LOCATION, RELIEF AND LAND USE

The land lies to the east of the River Trent, running down to the Newark-Nottingham railway as the southern boundary. The eastern edge is defined partly by the Old Trent Dyke, partly by field boundaries, and partly by the A616 road. The northern edge is a field boundary. The land is on the flood plain of the River Trent. Relief is very subdued, the land being mainly flat with some minor undulations. There is raised ground bordering the river, and residual 'rig and furrow' on old grassland. There are some earthworks in near Kelham Bridge and in a field on the northern side of the A617. Elevation is 10-12m AOD.

Most of the area is in arable use growing cereals and sugar beet, but there are significant areas of permanent and ley grassland, mainly for sheep.

AGRICULTURAL CLIMATE

This locality has a relatively dry climate with an average annual rainfall of **565 mm** and a January-June accumulated temperature above 0°C of **1428 day degrees**. It has a field capacity period (when the soils are fully replete with water) of **109 days**, extending on average from early December to the end of March. During the growing season, moisture deficits build up and those for wheat and potatoes average **119 mm** and **114 mm** respectively.

GEOLOGY

The underlying geology is of sandy and gravelly terrace deposits, much overlain by riverine alluvium.

Agricultural Quality

The site has been classified using the revised guidelines for agricultural land classification issued in 1988 by the Ministry of Agriculture, Fisheries and Food. A survey was carried out in March 2000 based on a 100 x 100 m grid; occasional additional sampling was carried out to check the location of boundaries. During the survey soils were examined by a combination of pits and augerings to a maximum depth of 1.2 m. A log of the sampling points and a map (Map 5) showing their location is in an appendix to this report.

The area between Kelham and Newark is designated by the Environment Agency as flood plain with a return period of 100 years, but the Agency was unable to provide details of more frequent flooding events. Local sources consulted report that parts of the area flood more frequently than this, with flooding not originating from the Trent directly, but with water backing up main watercourses like the Old Trent Dyke. It was reported that the Kelham to Newark road is closed by flooding every three to five years.

Grades 2, 3 and 4 were identified.

GRADE 2

There are about 22 hectares of grade 2 land of two main types.

The main area occurs on slightly raised land where the soils have sandy loam or sandy clay loam topsoils over sandy loam upper subsoils which become sandier below 60 cm depth. All layers are stoneless or only very slightly stony. The soils are mainly brown throughout, although there is often some mottling below 70 cm indicating slight seasonal wetness from fluctuating groundwater. The soils are similar to that described below in the section on sub-grade 3a land, but with sandy loam layers extending to below 60 cm depth. This reduces drought risk.

Elsewhere, grade 2 land occurs along the edges of the River Trent. Topsoils there are usually medium clay loam or sandy clay loams and stoneless. The subsoils are variable medium clay loams, sandy clay loams or heavy clay loams, but are characteristically brown and free from mottling within 50 cm depth. These layers

Land Research Associates

may be medium clay loams, sandy clay loams or heavy clay loams. Below 50 cm mottle colours indicate waterlogging, and horizons which are slowly permeable occur locally. The principal limitation to agricultural quality is slight droughtiness.

GRADE 3

Sub-grade 3a

There are 103 hectares of sub-grade 3a land of two distinctive types.

The first occurs on low domed hillocks rising above the alluvial soils. Topsoils are sandy clay loam or sandy loams and are over sandy loam upper subsoils. Within 60 cm depth, subsoil texture becomes loamy sand or sand. The soils are freely drained, but lower subsoils occasionally show rusty mottles indicating some wetness induced by fluctuating ground water. The principal limitation to land quality is doughtiness, however.

A typical soil profile described in a pit near the location of observation 191 is shown below

0-32 cm	Brown to dark brown (7.5YR 4/3) sandy clay loam with about 20% clay content; rare small rounded quartzite stones; weak medium subangular blocky structure; surface slightly slaked with thin cap.
32-48 cm	Reddish brown (5 YR. 4/4) and brown (7.5 YR 5/4) stoneless medium sandy loam, weak medium subangular blocky structure; common roots; many large pores.
48-80 cm	Brown (7.5 YR 5/4) stoneless loamy medium sand weak medium subangular blocky structure; common roots; common large pores.
80-120+ cm	Reddish brown (5YR 4/4) stoneless medium sand; structureless, single grain

Other areas of grade 3a land occur on more extensive areas of level but slightly raised alluvium. Topsoils are usually heavy clay loams which overlie heavy clay loam or clay upper subsoils which are either brown, or show only faint signs of mottling within 40 cm depth. The lower subsoils are usually clay and become slowly permeable at some depth. In many areas, very stony or gravelly layers are encountered within 120 cm depth and these may be helping to locally improve the through drainage of the soils.

A soil profile described in a pit near the location of observation 192 is shown below and represents the most mottled end of the range of these soils.

Land Research Associates

0-28 cm	Brown to dark brown (7.5YR 4/2) stoneless heavy clay loam; weak coarse subangular blocky structure with a fine surface crumb.
28-44 cm	Brown (7.5 YR. 5/3) stoneless heavy clay loam with a few strong brown (7.5 YR 5/6) mottles and common manganiferous concretions; strong to moderate medium subangular blocky structure; common macropores.
48-55 cm	Brown (7.5 YR 5/2) stoneless clay with common strong brown (7.5 YR 5/6) mottles; moderate medium subangular blocky structure; few macropores; permeable.
55-100+ cm	Brown (7.5 YR 5/2) clay with many grey (10YR 5/1) and strong brown (7.5 YR 5/6) mottles; weak medium prismatic structure becoming massive and slowly permeable below.

Moderate wetness caused by slow permeability and high groundwater table is the principal limitation to agricultural quality.

In addition, land on levees or raised banks bordering the Old Trent Dyke and a subsidiary drain have been downgraded to sub-grade 3a due to the risk of occasional moderate winter flooding.

Sub-grade 3b

There are 70 hectares of sub-grade 3b land again of two distinct types. It is commonest on the lowest lying parts of the site where the topsoils are clay or heavy clay loam over mottled slowly permeable clay subsoils.

A typical soil profile described near the location of observation 141 is shown below.

0-32 cm	Dark greyish brown (10 YR 4/2) stoneless clay with few strong brown mottles; weak coarse subangular blocky structure with a fine surface crumb.
32-55 cm	Brown (7.5 YR 5/2) stoneless clay with many strong brown (7.5 YR 5/6) mottles and common manganiferous concretions; weak coarse prismatic structure; slowly permeable.
55-100+ cm	Grey (10YR 5/1) clay with many strong brown (7.5 YR 5/6) mottles; massive.

The principal agricultural limitation is wetness, but in some areas where stony or gravelly layers are close to the surface (<50 cm), droughtiness is an equal limitation.

Droughtiness is the principal limitation to the other dominant class of 3b land found on the tops of small domed rises The topsoils are loamy medium sand or sandy loam, and the subsoils are loamy medium sand or medium sand. All the layers are permeable and stoneless.

Grade 4

A small area of land close to the River Trent is subject to frequent short or medium term flooding when the river level rises. Some land close to Kelham Bridge shows considerable undulation due to earthworks precluding its use as arable land with out remodelling, and has been down graded to grade 4.

Other land

Some land is not in agricultural use. A field edge next to the main road near Kelham Bridge has trees planted, and a small area nearby is hard standing for bridge maintenance and access to a pump extracting water from the river. Land near the railway in the far south is made up of water-filled pits and is covered in scrub woodland. A semi-metalled track runs through the land from Kelham Bridge towards the A616, with a truncated branch for access to the northern land.

The boundaries between the different grades of land are shown on Map 2 and the areas occupied by each are shown below.

	TOTAL SITE	
	AREA (HA)	%
Grade 2	21.75	11.6
Sub-grade3a	102.48	51.7
Sub-grade 3b	70.31	35.5
Grade 4	1.43	0.7
Non agricultural	2.31	1.2
TOTAL	198.28	100

Soil resources

Soil resources were assessed at the same time as the land quality survey by accurately recording the depths of the soil layers. Five soil resource layers were recognised, two topsoils, a medium and heavy subsoil, and a sandier subsoil.

Topsoil resources

Two topsoil resources occur, and their extent and distribution is shown on Map 3.

Topsoil resource **T1** is mainly associated with land that has soils developed in riverine alluvium, and consists of heavy clay loams and clays with an average thickness of **290 mm**. In general the resource is stoneless or very slightly stony, but there are small local patches of stony topsoils included. Near the river are some small areas of medium clay loam, and near some of the sandier hillocks of the area, some heavier sandy clay loam topsoils are included.

Topsoil resource **T2** is associated with raised land and soils formed in sandy or coarse loamy deposits. The mean thickness is **270 mm**. It consists of mainly medium sandy loams and includes some areas of light (*circa* 20% clay content) sandy clay loams, and some loamy medium sands

Subsoil resource

Three subsoil resources occur, and their extent and distribution is shown on Map 4.

The resources are associated with the same kind of division as the topsoil resources, with **S1** and **S2** mainly occurring under topsoil **T1**, and **S3** under **T2**

Subsoil resource **S1** consists of brown upper subsoils mainly from the western side of the site nearer to the River Trent. Textures are mainly heavy, with heavy clay loams dominant, but medium clay loam and clays also occurring. These layers are more porous than some of those underlying, and would be useful in restoring some heavier land to sub-grade 3a quality. Many are associated with areas where gravely or very stony bands lie close to the surface; the locations and depths to gravelly layers is also shown on Map 4. There is considerable variation in thickness but the average depth is about **300 mm** overall.

Subsoil resource **S2** consists of clay and heavy clay loam subsoils developed in the wetter and more poorly structured river alluvium. There is a considerable variation in depth; many extend to below 1200 mm depth, and some to less than 450mm over gravel. They will be a reasonable resource if stripped to 1000 mm depth with material below this considered as overburden. This resource also occurs below the browner **S1** resource in many areas.

Subsoil resource **S3** consists of mainly sandy loams and loamy sands but will include some medium sand. Stripping to 1000 mm would give an average depth of this resource of **730 mm.** Material below 1000 mm is likely to be sand.

No access was available for detailed survey of some adjacent land. The likely land quality in that area is assessed below from published information and interpolation of survey findings and shown on Map 2.

The landform is similar to the alluvium covered parts of the surveyed land in elevation and topography, although the westernmost section has a small sand hill in its southern extreme close to the railway.

No detailed soil maps of the site have been published and the national soil map is the primary source of information. Three soil associations are delineated in the vicinity of the site:

Fladbury 2	consisting of poorly drained clayey river alluvial soils, some
	shallow over gravel, and some better drained loamier soils.
Wharfe	Brown, freely drained loamy soils associated with moderately
	drained and wetter loamy soils
Arrow	Coarse loamy soils with sandier subsoils, more or less mottled

This range of soil types is entirely consistent with those found in our detailed survey of the site. In the usurveyed parts, Wharfe association is dominant in the land to the west and it would therefore be expected that sub-grade 3a will predominate, with smaller areas of sub-grade 3b. There is likely to be a small patch of grade 2 in the southern corner near the railway associated with a sandier hill. Topsoil resource **T1** will predominate on the sub-grade 3a and 3b land, and **T2** on the sandier land in the south. Subsoil resource **S1** may be common in the western field with **S2** below it. In the sub-grade 3b land in the east, the subsoils will be **S2.** There will be **S3** under the land dominated by grade 2. Thickness of all the resource layers is likely to be similar to those found in the detailed survey of the adjacent land.

The smaller field in the eastern side of the area is designated as Fladbury 2 association, and likely to be predominantly sub-grade 3b in quality.

APPENDIX

LOCATION AND DETAILS OF OBSERVATIONS FOR THE AGRICULTURAL LAND CLASSIFICATION SURVEY

Obs	Topsoil			Upper su	ubsoil		Lower su	bsoil			Wetness	ALC	Main
No	Depth	Texture	Stones	Depth	Texture	Mottling	Depth	Texture	Mottling	Slope	Class	grade	limitation
	(cm)		(%)	(cm)		-	(cm)		-	(º)		-	
1	0-30	MCL	0	30-50	SCL	0	50-120	stMSL+LMS	XX	0	II	2	D,W
2	0-32	HCL	0	32-60	HCL	0	<u>60</u> -90	С	х	0	II	3a	W
			_				90-120	SCL	XXX	_			_
3	0-32	HCL	0	32-40	LS+gr		40-55	MCL	XX	0	11	3b	D
	0.07		0	55-70	LS+gr	-	stopped	on stones		0		0-	14/
4	0-27	HCL	0	27-60	HUL	0	<u>60</u> -100	C	XX	0	11	38	vv
5	0-30	HCI	0	30-60	C	0-7	60-120	C	***	0	н	39	W
6	0-32	HCL	0	32-40	C C	XX XX	40-55	C C	××	0	11/111	3a/3h	Ŵ
Ŭ	0.02	HOL	0	55-110	с С	XXXX	over	gravel		Ŭ		00/00	••
7	0-29	HCL	0	29-55	č	x	55-70	C	xx	0	П	3a	W
		-	-		-		stopped	on gravel		-			
8	0-33	HCL	0	33-60	HCL	0	60-100	сĭ	0	0	II	2/3a	W
							100-120	С	XXX				
9	0-30	HCL	0	30-45	С	0	<u>45</u> -70	С	XXX	0	II	3a	W
							70-120	С	XXXX				
10	0-30	HCL	0	<u>30</u> -50	С	XX	50-120	С	XXX	0	11/111	3a/3b	W
11	0-30	HCL	0	30-45	С	х	45-70	С	XXX	0	111	3a	W
10	0.00			00.40	0		<u>70</u> -120	C	XXXX	0		0 = /01=	
12	0-32	HCL-C	I	32-40	C	x	40-55 atoppod		XX	0	П	3a/30	vv,D
13	0-30	HCL-C	0	30-40	C	$\mathbf{x}\mathbf{x}(\mathbf{x})$	40-100	C	~~~	0	11/11	3h	\M/
15	0-50	HOL-O	0	30-40	0	~~(^)	<u>40</u> -100	stSCI	~~~ XXX	U	11/11	50	**
14	0-30	С	0	30-40	С	xx(x)	40-90	C	XXX	0	П	3a/3b	W
		-	-		-		90-120	SCL	XXX	•			
15	0-24	caMCL	2	24-120	MCL+LS								
16	0-28	MCL	0	28-53	SCL	0	<u>53</u> -65	С	xx	1	II	2	W,D
							65-120	С	XXXX				
17	0-29	HCL-C	0	29-40	С	XX	<u>40</u> -120	С	XXX	0	11/111	3a/3b	W
18	0-29	HCL	0	<u>29</u> -45	С	xx(x)	45-120	С	XXXX	0	III	3b	W
19	0-27	HCL	0	<u>27</u> -120	С	XXX				0		3b	W
20	0-30	C	0	<u>30</u> -120	C	XXX				0		30	W
21	0-30	HOL	0	<u>30</u> -120	C	XXX	60 120	C	~~~~	0		3D 2h	VV W/
22	0-31		0	<u>31</u> -00	C	XXX VV	45-120	C	****	0	111	30	VV \\/
23	0-28	C	0	28-50	C	xx(x)	50-120	C C	~~~ XXX	0	11/111	3a/3h	Ŵ
25	0-26	C C	0	26-50	C C	xx(x) xxx	50-120	C C	XXXX	0		3h	Ŵ
26	0-28	SCL	1	28-90	vstMSL	x	90-120	SCL	XX	Ő	1	3b	D
27	0-28	MCL	0	28-50	HCL	x	50-90	HCL	XXX	0	II.	2	Ŵ
							<u>90</u> -120	С	XXX				
28	0-29	HCL	0	29-60	С	Х	<u>60</u> -120	С	XXX	0	11/111	3a/3b	W
29	0-29	HCL	0	<u>29</u> -50	С	XX	50-120	С	XXX	0	II	3a	W
30	0-30	HCL	0	30-45	HCL	x(x)	45-60	HCL	XX	0	II	3a	W
						()	<u>60</u> -120	C	XXX				
31	0-30	C	0	30-45	C	xx(x)	<u>45</u> -120	C	XXXX	0	111	3b	VV
32	0-31		U 1	<u>31</u> -120		XXX	50 70	201		1	111	30	VV VA/
33	0-26	HUL	1	26-30	HUL	Х	50-70	SUL	XX	U	11	Ja	٧V

Land near Kelham - Details of observations at each sampling point

Obs	Topsoil Upper subsoil						Lower su	bsojl			Wetness	ALC	Main	
No	Depth	Texture	Stones	Depth	Texture	Mottling	Depth	Texture	Mottling	Slope	Class	arade	limitation	
	(cm)		(%)	(cm)			(cm)	10		(º)	0	9		
	,		<u>\</u>	\-···/			70-120	stSCL	xxx					
34	0-31	HCL	0	31-50	Ç	xx	50-80	C	XX	0	П	3a	W	
			-		-		stopped	on stones		-				
35	0-32	С	0	32-50	HCL	xx	50-100	stHCL	xxx	0	Ш	3a	W	
		-	-		-		stopped	on stones		-				
36	0-31	HCL	0	31-70	С	xxx	70-120	SCL	xxx	0	11/11	3a/3b		
37	0-29	SCL	1	29-40	SCL	0	40-70	MSL	0	0	II	2	D	
				70-100	LMS	х	100-120	MS	xx					
38	0-26	HCL	0	26-70	SCL	0	stopped	on gravel		1	I	3a	D	
39	0-32	HCL	0	32-90	MCL	0	90-120	MCL	х	0	1	2	D	
40	0-30	HCL	0	30-45	HCL	х	45-65	HCL	XX	<1	II	3a	W	
							<u>65</u> -120	С	XXX					
41	0-30	HCL	0	30-60	HCL	XX	60-120	HCL	XXX	0	II	3a	W	
42	0-30	(s)HCL	0	30-60	(s)HCL	XX	60-120	HCL	XXX	0	II	3a	W	
43	0-30	MSL	1	30-60	MSL	0	60-120	LMS	0	1	1	2	D	
44	0-31	SCL	1	31-45	SCL	0	45-80	LMS	х	0	1/11	3a	D	
							80-120	MS	XX					
45	0-31	SCL	0	31-45	SCL	0	45-60	MSL	0	0	1/11	2/3a	D	
					-		60-120	LMS-MS	х	_		_		
46	0-31	HCL	0	31-50	С	XXX	50-65	SCL	XX	0	II	3a	W	
				65-90	stMSL	XX	90-120	MS	XX					
47	0-30	HCL	0	30-55	HCL	XX	55-90	stHCL	XXX	0	II	3a	W	
40	0.00	0	0	00.50	0		stopped	on stone		0		01-	14/	
48	0-29	C	0	29-50	C	XXX	<u>50</u> -120	C	XXXX	0		30	VV	
49	0-28	C	0	<u>28</u> -65	C	XXX	65-120	C	XXXX	0		30	VV	
50	0-30	C	0	<u>30</u> -50	C	XXX	50-110	C at 110 area	XXXX	0	111	30	vv	
E1	0.07	MOL	0	07.05	MOL		stone	at 110cm	2007	0		0		
51	0-27		3	27-85	MCL	0	85-120	MCL	XXX	0	1	3	D, VV	
52	0-30		0	30-80	HUL C	0	45 100	HUL C	XX	0		38 26/20	VV \\/	
53	0-32	HUL-U	0	32-43	C	XX(X)	45-100		XXX	0	11/111	30/38	vv	
54	0.22		0	22.60		vv	60.70	SINCL	VVV	0	н	20	۱۸/	
54	0-33	HOL	0	33-00	HOL	**	70-120	MIS	~~~	0	п	Ja	vv	
55	0-28	HCI	0	28-60	HCI	0	60-100	C.	~~ vv(v)	0	ш	39	W	
55	0 20	HOL	0	100-110	stSCI	0	stopped	on gravel	~~(^)	U		Ju	**	
56	0-31	(s)HCI	0	31-45	SCI	x	45-120	MSI	XXX	0	П	3a	D	
57	0-32	SCI	2	32-55	SCI	^ 0	55-70	stMSI	X	0		3a	D	
07	0.02	OOL	2	02 00	OOL	0	70+	MI S+gravel	~	U		ou	D	
58	0-29	MSI	2	29-65	MSI	0	65-80	MLS+graver	0	0	1	3a	D	
00	0 20	MOL	-	20 00	MOL	Ũ	stopped	on gravel	Ũ	Ũ	•	ou	2	
59	0-29	HCI	1	29-100	С	XXX	100-120	LMS+ar	xx	0	Ш	3b	W	
60	0-25	C	00	25-50	Č	XXX	50-110	C	XXXX	0		3b	Ŵ	
	0 20	0		<u>=0</u> 000	U U	7001	stopped	on gravel	10000	°		0.0		
61	0-30	SCL	1	30-60	MSL	0	60-120	LMS	х	1	I	2	D	
62	0-29	MSL	0	29-120	LMS	0			-	1	I		D	
63	0-31	SCL	1	31-70	MSL	0	70-100	LMS	х	1	Ì	2	D	
			-			-	100-120	MS	x	-		-		
64	0-20	HZCL	0	20-45	HCL	0	45-60	MSL	xxx	0	II	3a	W	
	-	-		-			60-120	SCL+LS						
65	0-30	HCL	0	30-70	HCL-C	0	<u>70</u> -90	stC	XXX	0	II	3a	W	
				1			stopped	on gravel						

Obs	Obs Topsoil			Upper su	ubsoil		Lower su	bsoil			Wetness	ALC	Main
No	Depth (cm)	Texture	Stones	Depth (cm)	Texture	Mottling	Depth (cm)	Texture	Mottling	Slope (º)	Class	grade	limitation
66	0-26	HCL-C	0	26-55	HCL	0	55-70	С	x	0	II	3a	W
			-	70-110	HCL	xxx	110-120	MSL over ar	XX	-			
67	0-29	HCL	0	29-60	С	0	60-90	(st)C	XXX	0	11	3a	W,D
							stopped	on gravel					·
68	0-33	HCL	0	33-55	С	XX	<u>55</u> -110	СŬ	XXX	0	111	3b	W
							stopped	on gravel					
69	0-33	HCL	0	33-40	HCL	х	<u>40</u> -70	C	XXX	0	111	3b	W
				70-80	vstC	XX	80-120	stSC	XXXX				
70	0-28	HCL-C	2	28-40	С	XX	<u>40</u> -70	С	XXX	0	111	3b	
				70-80	HCL	v.dark	stopped	on gravel					
71	0-26	С	1	<u>26</u> -100	С	XXX	stopped	on gravel		0	111	3b	W
72	0-26	С	0	<u>26</u> -60	С	XXX	60-110	stHCL	XXX	0	111	3b	W
		_			-		110-120	SCL+gr					
73	0-28	С	1	<u>28</u> -80	С	XXX	stopped	on stones		0		3b	W
74	0-31	MCL	1	31-60	SCL	х	60-110	MSL	XX	<1	II	2	D
							110-120	LMS+gr	XX				
75	0-28	MSL	<1	28-60	MSL	0	60-100	LMS	XX	1	1/11	2	D
							100-120	MS	XX				
76	0-29	MSL	1	29-60	MSL	0	60-100	MSL	XX	1	1/11	2	D
							stopped	on stones					
77	0-15	HZCL	0	15-120	HCL	0	disturb-	ed ground		0	I	2	D
78	0-28	M/HCL	0	28-60	HCL	0	60-80	HCL	XX	0	II	3a	W
							<u>80</u> -120	С	XXX				
79	0-30	HCL	2	30-55	HCL	0	55-70	stC	XX	0	11	3a	W
80	0-30	HCL	0	30-45	HCL	Х	45-70	SCL	Х	0	1/11	2/3a	W
							70-120	MSL	XX				
81	0-31	HCL	0	31-50	С	XX	50-65	С	XX	0	11	3a	W
							stopped	on stones					
82	0-30	HCL-C	4	30-60	HCL	Х	stopped	on stones		0	11	3a	W
83	0-29	С	0	29-60	С	XXX	stopped	on stones		0	111	3b	W
84	0-30	HCL-C	4	30-40	HCL	Х	40-70	stHCL	XX	0	11	3a	W,D
							stopped	on gravel					
85	0-31	HCL	2	31-45	HCL	0	stopped	on gravel		0	11	3b	D
86	0-30	HCL	2	30-50	MSL	0	50-70	MSL	XX	0	II	3a	W
							stopped	on gravel					
87	0-27	С	<1	<u>27</u> -55	С	XXX	stopped	on gravel		0	111	3b	W
88	0-30	SCL	1	30-40	HCL	XXX	<u>40</u> -120	С	XXX	1	111	3b	W
89	0-16	MZCL	0	16-60	HCL	0	60-75	SCL	XX	0	11	2	D
							75-120	SCL+LS	XXX				
90	0-30	HCL	0	30-60	HCL	0	<u>60</u> -100	С	XXX	0	II	3a	W
							stopped	on stones					
91	0-30	HCL-C	2	30-90	stC	XXX				0	111	3b	W
92	0-26	HCL	1	26-50	HCL	0	stopped	on gravel		0	11	3b	D
93	0-31	HCL-C	<1	31-40	С	x(x)	40-70	stC	XXX	0	II	3a	W
		_			-		stopped	on gravel					
94	0-28	С	0	28-55	С	х	stopped	on gravel		0	II	3b	D
95	0-30	С	2	30-45	С	XXX	stopped	on gravel		0	III	3b	W, D
96	0-30	HCL	5	30-45	HCL	XX	stopped	on gravel		0	II	3b	D
97	0-32	LMS	0	32-120	LMS	0				1	I	3b	D
98	0-32	LMS-SL	1	32-90	LMS	0	90-120	MS	х	0	I	3a/3b	D
99	0-34	LMS	1	34-90	LMS	0	90-120	MS	х	0	I	3b	D

Obs	Topsoil			Upper su	ubsoil		Lower subsoil			Wetness	ALC	Main	
No	Depth (cm)	Texture	Stones (%)	Depth (cm)	Texture	Mottling	Depth (cm)	Texture	Mottling	Slope (º)	Class	grade	limitation
100	0-33	SCL	2	33-40	SCL	XX	40-60	С	XXX	0	III	3a	W
							60-120	SCL	XXX				
101	0-14	MCL	0	14-75	SCL	0	75-110	SCL	хх	0	II	2	D
							110-120	MSL	XX				
102	0-16	(s)MCL	0	16-75	SCL	0	75-90	SCL	XX	0	II	2	D
		. ,					90-120	С	XXX				
103	0-17	HCL	0	17-50	С	xx	50-120	С	XXX	0	11/111	3a/3b	W
104	0-28	HCL	0	28-55	HCL	х	55-70	stC	XXX	0	II.	3a	W
-		-	-		-		stopped	on gravel		-			
105	0-28	HCI	0	28-45	HCI	0	45-50	stC	xx	0	Ш	3a/3b	D
	0 20		•	_0 .0		0	stopped	on gravel	700	J.		04,00	-
106	0-29	MCI	2	29-75	stHCI	x	stopped	on gravel		0	П	3a	П
107	0-31		1	31-55	HCI	~ ~ ~	stopped	on gravel		0		32	Ŵ
107	0.29	SCI	2	29-120		~~	Stopped	ongraver		1	1/11	32	
100	0.22	MSI	2	23-120	MGI	0				1	1/11	5a 2	
109	0-32		2	32-120		0	atannad	on aroual		1	1	2	D
110	0-31		1	31-110		0	stopped	on graver			1	2	D
111	0-32		1	32-90	LIVIS	0	90-120	MS	0			30	D
112	0-30	SCL	2	30-60	SCL	х	60-120	MSL	XX	1	1/11	2	D
113	0-30	HCL	0	30-60	HCL	0	<u>60</u> -120	C	XXX	0		3a	VV
114	0-30	HCL	0	<u>30</u> -40	C	XX	40-120	C	XXXX	0		36	VV
115	0-29	HCL	1	29-45	HCL	0	45-60	stHCL	х	0	1/11	3a	D,W
							stopped	on stone					_
116	0-27	HCL	8	27-50	vstHCL	0	stopped	on stone		0	II	3b	D
117	0-30	HCL	5	30-45	HCL	х	45-70	stC	XXX	0	II	3a	W,D
							stopped	on stone					
118	0-24	LMS	3	24-60	LMS	0	60-120	MS	XX	0	I	3b	D
119	0-26	SCL	3	26-100	(st)SCL	0	stopped	on stones		1	I	2	D
120	0-32	MSL	1	32-60	LMS	0	60-120	LMS	х	1	I	3a	D
121	0-30	MSL	1	30-60	MSL	0	60-110	LMS	0	1	I	2	D
							110-120	MS	х				
122	0-29	SCL	1	29-60	SCL	0	60-120	MS+gr	хх	0	I	3a	D
123	0-26	HCL	1	26-50	HCL	xx	50-70	HCL	xxx	0	II	3a	W
							70-120	C	XXXX	-			
124	0-30	HCL	2	30-40	HCL	х	40-120	Ċ	XXX	0	11/111	3b	W
125	0-27	HCL	2	27-45	HCL	xx	45-70	Ċ	XXX	0	II.	3a	W
-	-	-		-	-		stopped	on stones		-			
126	0-18	MZCI	0	18-50	vstC	0	stopped	on stone		0		3b	D
127	0-28	SCI	8	28-50	SCI	Ő	50-60	vstSCI	0	Ő		3b	D
/	1 2 20	001	5		001	5	stopped	on stone	J.	Ĭ		00	-
128	0-34	MSI	1	34-60	IMS	0	60-120	MS	x	1	1	3a	D
129	0-27	MSI	2	27-60	LMS	0	60-110	MS	x	0	i	3h	D
123	0 21	NOL	2	21 00	LING	0	stopped	on aravel	^	Ŭ		00	D
130	0-31	MSI	1	31-70	MSI	0	70_20	IMS		2	1	30	П
130	0-31	IVIOL	1	31-70	NISL	0	rtoppod	LIVIO+YI		2	I	Ja	U
101	0.00		0	20.50	C		stopped	on stones		4		0h	14/
131	0-32	HUL	2	32-50	U	XX(X)	<u>50</u> -90	C	XXXX	1	111	30	vv
100		0		90-100	SISCL	XXX	stopped	on stone				01	
132	0-28	C	1	28-110	C	XXX	110-120	MS	XXX	0		36	VV
133	0-27	C	1	<u>27</u> -60	C	XXX	60-100	SCL	XXX	0	III	3b	W
	1						100-120	С	XXXX	1			

Obs	Topsoil			Upper su	bsoil		Lower su	bsoil			Wetness	ALC	Main
No	Depth	Texture	Stones	Depth	Texture	Mottling	Depth	Texture	Mottling	Slope	Class	arade	limitation
	(cm)		(%)	(cm)			(cm)			(º)		3	
134	0-28	HZCL	0	28-65	HCI_	xx	65-120	C	xxx	0	U.	3a	W
135	0-32	HCI	Õ	32-60	HCL	XX	60-120	C	XXX XXX	0		3a	Ŵ
136	0.28	HCL	0	28-60	C	~~	<u>60-120</u>	C	~~~	0		3h	Ŵ
127	0.12		0	12 20	Č	xx(x)	<u>00</u> -120 stoppod	on gravel	~~~	0		30 25	
107	0.12	MCL	1	12 100		xx(x)	stopped	Ungraver		0	11	30	
100	0-13		1	20.40	SUNCE	0	40.70	MIStor	0	0	11	od oh	D, VV
139	0-29	SUL	4	29-40	SUL	0	40-70	IVILS+gr	0	0	1/11	30	D
140	0.00	0.01	0	00.55			stopped	on gravel		4		0-	D
140	0-32	SUL	2	32-55	SUL	х	55-110	MLS+gr	х	<1	11	3a	D
							stopped	on gravel					
141	0-32	C	0	<u>32</u> -100	C	XXX	100-120	SCL	XXX	1	111	36	W
142	0-32	HCL-C	0	<u>32</u> -120	С	XXX		_		1		3b	W
143	0-32	HCL-C	0	32-40	С	XX	<u>40</u> -60	С	XXX	0	111	3b	W
							60-120	HCL(s)	XXX				
144	0-32	HCL	0	32-45	HCL	XX	<u>45</u> -70	С	XXX	0	II	3a	W
							70-120	С	XXXX				
145	0-30	HCL	0	30-45	HCL	XX	45-60	С	XXX	0	II	3a	W
							<u>60</u> -120	С	XXXX	0	II	3a	W
146	0-27	HCL	0	27-70	С	XXX	70-120	С	XXXX	0	III	3b	W
147	0-15	HCL	0	15-30	С	XX	30-60	С	XXX	0	11/111	3a/3b	W
							60-120	С	XXXX				
148	0-32	MCL	8	32-40	stMCL	0	stopped	on gravel		0	1/11	3b	D
149	0-32	SCL	3	32-40	stMSL	0	40-70	LMS+ar	0	0	Í	3b	D
			-			•	stopped	on gravel	-	-			_
149a	0-30	С	0	30-70	С	xxx	70-120	HCL	XXX	0	Ш	3b	W
150	0-31	HCI	0	31-45	Č	XX	45-80	C	XXX	0		3a	Ŵ
	0.01		0	01.10	C	701	80-120	Č	XXXX	Ũ		<u>u</u>	
151	0-26	HCI	0	26-45	С	XX	45-100	C	XXXX XXX	0	Ш	3a	W
131	0 20	HOL	0	20 40	0	~~	100-120	etSCI	~~~	U		Ju	**
152	0-26	HCI	0	26-70	C	~~~	70-100	stSCL	~~~	0	ш	3h	\A/
152	0-20	HOL	0	20-70	U	***	70-100	on stone	***	0		30	vv
150	0.01		0	21.40	<u> </u>			On stone	2007	0	1/111	0a/0h	14/
153	0-31	HUL-U	0	31-40	C	XX(X)	<u>40</u> -70	0	XXX	0	1/111	38/30	vv
454	0.04		•	04.40			70-120		XXXX			0-	14/
154	0-34	HCL	0	34-40	HUL	XX	40-50	VSTHCL	XX	1	11	3a	vv
465	0.07			<u>50</u> -70	C	XXXX	stopped	on stone					
155	0-27	HCL	0	27-60	SCL	XX	<u>60</u> -120	C	XXXX	0		3a	vv
156	0-31	HCL-C	0	<u>31</u> -60	С	XXX	60-120	С	XXXX	0	III	3b	W
157	0-32	HCL-C	0	32-50	С	xx(x)	<u>50</u> -110	С	XXXX	0	11/111	3a/3b	W
							over	LMS+gr					
158	0-25	С	<u>0</u>	<u>25</u> -70	С	XXX	70-90	stSCL	XXX	0	III	3b	W
							90-120	MLS+gr					
159	0-28	HCL	0	<u>28</u> -110	С	XXX	110-120	vsrC	XXX	0	111	3b	W
160	0-30	HCL-C	0	30-55	HCL	XX	<u>55</u> -110	С	XXX	0	II	3a	W
							110-120	MSL+gr	XX				
161	0-30	HCL-C	0	<u>30</u> -120	С	XXX		-		0	III	3b	W
162	0-29	HCL	0	29-80	С	XXX	stopped	on gravel		0	III	3b	W
163	0-32	HCL	0	32-60	С	xxx	60-100	vstHCL	XXX	0	Ш	3b	W
			-		-		stopped	on stone					
164	0-31	С	0	31-75	С	xxx	75-100	C	XXXX	0	Ш	3b	W
	0.01	0	v	<u> </u>	J.		stopped	on stone		Ŭ		0.0	
165	0-22	HZCI	0	22-65	HCI	0	65-110	HCI	xx	0	Ш	3a	W
100	0 22	I ZOL	0	22 00	HOL	0	110-120	C	~~	Ŭ		Ja	**
11	1			1			110-120	0	~~~	1			

Obs	Topsoil Upper subsoil				Lower su	bsoil		Wetness	ALC	Main			
No	Depth (cm)	Texture	Stones (%)	Depth (cm)	Texture	Mottling	Depth (cm)	Texture	Mottling	Slope (º)	Class	grade	limitation
166	0-29	HCL	0	29-60	HCL	XX	60-120	stC	XXX	0	11	3a	W
167	0-29	HCL-C	0	<u>29</u> -60	С	XXX	60-110 stopped	C on stone	XXXX	0	III	3b	W
168	0-26	HCL	0	26-65	HCL	xx	65-100 stopped	stSCL	хх	0	II	3a	W
169	0-28	HCL	0	28-50	С	xx	<u>50</u> -90	C on stone	ххх	0	11/111	3a/3b	W
170	0-20	MCL	0	20-80	HCL	0	80-90	HCL	XX	0	Ш	3a	F
171	0-28	HCI	2	28-50	HCI	x	stopped	on stone	~~~	0	1/11	3b	D
172	0-29	HCL	0	29-80	C	XXX	stopped	on stone		Ő	л. Ш	3b	Ŵ
173	0-31	HCL	2	31-40	HCI	xx(x)	40-60	HCI +ar	xx	Ő		3a	D.W
	001		-	60-90	StMLS	XX	stopped	on stone	700	Ŭ		04	2,
174	0-28	HCL	4	28-50	vstHCL	0	stopped	on stone		01	П	3b	D
175	0-30	HCL-C	0	30-38	HCL	xxx	38-120	C	XXX	0		3b	Ŵ
176	0-30	HCL	<1	30-50	C	XXX	50-120	Č	XXX	0	III	3b	Ŵ
177	0-27	HCL	0	27-55	Č	XXX	55-120	Č	XXX	Ő		3b	Ŵ
178	0-30	M-HCI	4	30-55	srSCI	x	stopped	on gravel	7000	Ő	1/11	3b	D
179	0-27	HCI	2	27-60	HCI	x	stopped	on stone		Ő	и. П	3a	ŴD
180	0-27	C	0	27-60	C	XXX	stopped	on stone		0		3h	W
181	0-28	C	0	28-40	C	××	40-70	C	$\mathbf{x}\mathbf{x}(\mathbf{x})$	0		39	WD
101	0-20	0	0	20-40	0	~~	stopped	on gravel	~~(^)	0		Ja	VV,D
182	0-28	HCL-C	0	28-50	HCL	xx	50-75	C	XXX	0	Ш	3a	W
183	0-8	MZCI	0	8-120	C	~~~	<u>75</u> 120	0	~~~~	0	ш	3h	W
18/	0-0	SCI	2	<u>0-120</u> 31-70	50	^^^	70-80	etSCI	vv	0	1	2	
104	0-31	30L	2	31-70	30L	0	stopped	on gravel	~~	U	1	2	U
185	0-30	HCL	1	<u>30</u> -100	С	XXX	stopped	on gravel		0	111	3b	W
186	0-33	HCL	0	33-70	С	х	stopped	on gravel		0	II	3a	W,D
187	0-30	HCL	0	30-45	С	XX	<u>45</u> -70 stopped	C on gravel	XXX	0	II	3a	W
188	0-28	HCL	0	28-60	HCL	x(x)	<u>60</u> -100 stopped	C on gravel	ххх	0	II	3a	W
189	0-15	HZCL	0	15-40	HCL	0	40-65 65-120	C C	XX XXX	0	II	3a	W
190	0-19	MCI	0	19-90	SCI	0	90-120	HCI	x	0	1	3a	F
191	0-28	MSI	ĩ	28-80	MSI	0	80-120	I S+HCI	x	1	i	2	D
192	0-32	HCL	0	32-45	C	xx	45-120	C	\mathbf{x}	0	II	3a	Ŵ
193	0-31	HCL	0	31-60	C C	ó	stopped	on gravel	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	ii	39	лw
194	0-28	HCL	õ	28-50	нсі	0	stopped	on gravel		Ő	1/11	3a	D,
104	0-20	MCL	0	28-70	C	0 VVV	70-120	C	~~~~	0	111	3a(/h)	W
106	0-20	MCL	0	22-65	SCI	^^^	65-120	HCI	^^^^	0	1	3a(/D)	F
107	0-22	MSI	1	31-110		0	110-120	MS	0	1		3a	'n
100	0-20		2	20-60		0	60-120	atSCI				0a 2	
190	0.23		2	29-00	30L C	U	55 120	SIGUL C	XX VVV			2	U W
200	0-33		0	33-33		**	00-120	U on otono	***	0	11	od 20	VV D
200	0-33	HUCL	0	33-70	HUL	0	stopped	on stone	2007		1/11	Ja	U W
201	0-29	HUL	U	29-50	HUL	XX	<u>08-00</u>		XXX	U	П	Ja	vv
202	0-15	MCL	0	80-90 15-38	stC MCL	xxx x	stopped 38-50	on stone C	ххх	1	11/111	3a	W
			_				<u>50</u> -120	С	XXX				
203	0-35	HCL	2	35-60	SCL	XX	60-80	MSL-LMS	XX	0	11	2/3a	W

Obs	Topsoil			Upper su	ıbsoil		Lower su	ıbsoil			Wetness	ALC	Main
No	Depth	Texture	Stones	Depth	Texture	Mottling	Depth	Texture	Mottling	Slope	Class	grade	limitation
	(cm)		(%)	(cm)		_	(cm)			(º)		-	
							80-120	HCL+SCL					

Key to soil and ALC tables

Mottle	e intensity:	Texture:					
0	unmottled	C - clay					
х	few to common rusty root mottles	ZC - silty clay					
	(topsoils) or a few ochreous mottles	SC - sandy clay					
	(subsoils)	CL - clay loam (H-heavy, M-medium)					
XX	common to many ochreous mottles and/	ZCL - silty clay loam (H-heavy, M-medium)					
	or dull structure faces	SCL - sandy clay loam					
XXX	common to many greyish or pale	SZL - sandy silt loam (F-fine, M-medium, C-coarse)					
	mottles (gleyed horizon)	SL - sandy loam (F-fine, M-medium, C-coarse)					
XXXX	dominantly grey, often with some	LS - loamy sand (F-fine, M-medium, C-coarse)					
	ochreous mottles (gleyed horizon)	S - sand (F-fine, M-medium, C-coarse)					
md	mottled (topsoils only)	P - peat (H-humified, SF-semi-fibrous, F-fibrous)					
		LP - loamy peat SP - Sandy Peat					
		PL - peaty loam Sed P - Sedimentary peat					

a depth underlined (e.g. 50) indicates the top of a slowly permeable layer.

Limitations: W - wetness/workability D - droughtiness De - depth St - stoniness SI - slope F - flooding

Texture suffixes & prefixes: ca - calcareous gr - gravel st - stony cky- chalky e - extremely v - very

Map 5 Location of the observations (1:12,500)